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How do we achieve data-driven culture?

LEAD TO

1. Limited time (
2. Limited resources

3. Little to no chances to
make mistakes CASUALITY

4. Little hope for instant
gratification

t WHICH SHAPE FUTURE J

Source: “Tools for system thinkers” by Leyla Acaroglu, 07/09/2017 éﬁg//l\/>
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The only three reasons to do Al
from the industry perspective
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If you can measure it,

you can understand it.

If you can understand
it, you can alter It.

Siatterine Nevdle




Alis the answer,
But What is the question??

e =

How is everything What impacts my What should | What are exceptions
related to key performance change to achieve to the rules?
everything else? metrics? the targets?

Correlation of How can | be sure? How can | be sure? Why is that? What
causation? are we missing?
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Simple Correlations

SEE HOW YOUR VARIABLES CAN BE CLUSTERED

How is everything related to everything else?
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What impacts my Key Performance Metric?

® ®
Socioeconomic Empowerment: Shareo
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Predictive Models

A QUICK SUMMARY OF PREDICTIVE MODELING RESULTS

1. Adult population with at least some
secondary education 2010-2017,
Female to male ratio

The optimal model ensemble predicting the KPI has the following features: I
>

A adol) 3

80.0% e 3 172

We discovered 3 variables sufficient and necessary to predict the KPI:

2. Adult share of employment in non-

agriculture, Female (% of total)
3. Social sustainability: Income quintile -
ratio change 2010-2017 (%)

During the iterative process of selecting the minimum set of attributes (data columns), which has the best predictive accuracy, we created and challenged
models across a couple of hundred iterations. A half of the computational effort was spent on meticulous cross-validations to make sure we avoid over-
fitting and maximize the predictive power of models given for your data. In the final iteration after we discovered all driver attributes, we built the final
ensemble of models only using these drivers. The accuracy reported above is the exact accuracy achieved for the final model ensemble on the training
data. Models showing values higher than the reported accuracy on the same data will likely be over-fitting. Acceptable values of the optimal accuracy really
PSRRI TSNP e Affeibiimmnn Ak o AL S SRS O NP Al bl et almiin AARL it A cammes mcalimbia e
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What can | change to improve?
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What-Ifs

EXPLORE HOW CHANGES IN THE DRIVER ATTRIBUTES IMPACT VALUES OF YOUR KPI

Play with the sliders under the graphs to see how predicted values of your KPI will change if you change the
values of the input. The vertical axis of all graphs depicts a range of the KPI values. Horizontal axes are the
ranges of the driver attributes. The red dot depicts the current prediction evaluated by the model ensemble
< when all model inputs are set to slider values. Click Minimize and Maximize buttons to find optimal values of the >
sliders leading to the maximal and the minimal predicted values of your KPI.

Socioeconomic empowerment Female share of employment in senior and middle management (%) 2009-2017

Predicted: 35.84
Actual: N/A

Importance: 54.4% Importance: 29.9% Importance: 15.6%
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MALTE LOHAN
Orgalim Director General, Europe's Technology Industries

DataStories had the experience and expertise to show us
the possibilities of deploying Al in a policy context, as we
experimented with generating fresh forward-looking
insights, forecasts and predictive models. The aim was to
explore how socio-economic indicators are related to
each other and to important industrial KPIs - for example
understanding the impact of R&D investments on
productivity. We look forward to building on this work as
we continue to champion smarter policy.

UWE COMBUCHEN
Director General at CEEMET - European Employer organisation
of the metal, engineering and technology-based industries

DataStories has tremendously helped Ceemet, the
European tech employers. DataStories comprehend this
highly complex matter and have the talent to
communicate Al and the potential it holds in a transparent
and understandable way. More people with the skills and
the attitude of the CEO Katya Vladislavleva and the team
would certainly help to increase trust in Al so it can fully
unleash its human centric potential in a Europe, that has
chosen to underscore the ethical approach to Al, and
beyond.

1.8.0.8. 8.
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Four questions towards effective human-
centric business management

95% of returns on Investment are less than two quarters

e e '

O
O —p
How is everything What impacts my What should | What are exceptions
related to key performance change to achieve to the rules?
everything else? metrics? the targets?
Correlation of How can | be sure? How can | be sure? Why is that? What
causation? are we missing?
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DataStories Int.

Facilitate

data-driven culture

with outcome-

driven Al
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Decoding Leadership

Stories + Sharing

AUGMENT BUSINESS USERS WITH EASY TO USE TOOLS

AUGMENT DATA SCIENTISTS WITH PYTHON LIBRARIES

ENABLE SHARING AND COLLABORATION

ENABLE DEPLOYMENT AND MONITORING
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