Robot Systems in Human Integrated Production

Fraunhofer Institute for Manufacturing Engineering and Automation IPA

Dr.-Ing. Werner Kraus

Head of department "Robot and Assistive Systems"

- Tel. +49 711 970-10 49
- E-Mail wek@ipa.fraunhofer.de
- Web <u>https://www.ipa.fraunhofer.de/en/expertise/robot-and-assistive-systems.html</u>

Fraunhofer IPA as part of the Fraunhofer-Gesellschaft

Fraunhofer Institute for Manufacturing Engineering and Automation IPA

- One of the largest institutes of the Fraunhofer-Gesellschaft
- IPA located in Stuttgart, the capital of federal state of Baden-Württemberg
- IPA: More than 1,000 employees, 74 M€ budget
- 60 years of experience implementing innovations for the industry
- Main customers are equipment/ machinery and automotive industry
- Startup-activities: 18

Typical Forms of Cooperation with Fraunhofer IPA

Bidirectional R&D Projects	 Specific R&D task, study, test, prototype Objective → offer→ result/tech transfer Standard form of collaboration (>50%) 	Fraunder
Strategic co-operations	 Longer term framework agreement Strategic R&D (roadman), tech transfer Your R&D, pre-development pole 	Trumpf-IPA Cooperation
Why Fraunhofer?	 Neutrality Experience, competence, infrastructure Industrial mind-set, processes, quality 	

Examples of robot end-effector developments since 1973 (>150) at Fraunhofer IPA in Stuttgart

Why does Human-Robot-Collaboration catch on slowly? The 4 benefit categories of HRC

Distance ψ : less logistics, transfer

Ergonomics Λ : pairing strengths

Agility \uparrow : safety fence elimination, mobility

Peripherals ψ : Integration into workplace

Fraunhofer E3 – Assistance Systems for Production

Why does Human-Robot-Collaboration catch on slowly? Planning for safety and certification as a burden

Automated risk assessment and safety design; building blocks:

- Product (Parts, assemblies, etc.)
- Resources
- Processes (not yet fully implemented)
- Capabilities
- Hazards

Why does Human-Robot-Collaboration catch on slowly? Outlook CARAML – Computer Aided Risk Assessment with Machine Learning

Robot system learns the safe execution of assembly operations in simulation

Robot learns the execution of the process

Robot learns the **safe** execution of the process

Explainable behaviour

Robot Systems in Human Integrated Production Conclusions

- The vision is clear: robot and human will work hand in hand together in future

- Besides safety, also security (e.g. manipulation) and privacy (e.g. data theft) become important

German television Thriller Tatort 16.9.2018 Robot under suspicion of murder

